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lowed 3 dB to convert our double-sideband measurements to

single-sideband for comparison. This may well be too large an

increase since we are thereby assuming the mixer to respond

equally in both sidebands, which is unlikely given the resonant

nature of the diode– stripline-IF filter combination.

The local oscillator power requirement of our mixer is seen to

be relatively low; this becomes important if the design is to be

used at higher frequencies [10]. Fig. 10 shows that there is some

residual IF mismatch at 3.9 GHz which could be removed by an

appropriate IF impedance matching transformer leading to a

further small improvement in performance.

The most significant advantage of the new design lies in the

simplicity of the structure. Given the availability y of diodes,

a mixer with good performance can be assembled without

sophisticated bonding or whispering equipment. Furthermore,

the reduction of all linear dimensions (including those of the

Schottky barrier) by up to a factor of two would appear to

present no difficulty either in diode processing or mixer circuit

construction and assembly. We, therefore, anticipate that the

same basic design can be used for operation up to 200 GHz.
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Scattering at an N-Furcated Parallel-Plate

Waveguide Junction
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Abstract —Using the conservation of complex power tecfmique (CCPT),

this paper presents a solution to the problem of EM scattering at the
junction of a paraflel-plate wavegoide and an iV-furcated parallel-plate

waveguide with arbitrarily spaced thick septa. Although this junction can be

regarded as an (N + I)-port configuration, the problem is formulated so

that it is viewed mathematically as a generalized 2-port. This leads to very

simple expressions for the scattering parameters of the junction. Conver-

gent numerical results are presented for bifurcated, trifurcated, and 4-fur-

cated structures, and the effects of varying the thickness of the septa sre

investigated. The formulation is directly applicable to N-furcated rectangu-

lar wavegoide junctions having TEnO excitation, with application in the

design of E-plane filters.

I. INTRODUCTION

Electromagnetic scattering at the junction of a parallel-plate

waveguide and a bifurcated parallel-plate waveguide with a sep-

tum of vanishing thickness has been studied by Mittra and Lee

[1], who provided analytical solutions using the residue calculus

method and the Wiener–Hopf technique. Moreover, a quasi-static

solution using the singular integral equation method has been

given by Lewin [2] for the case of a centrally located infinitely

thin septum.

Trifurcated waveguide junctions were treated by Pace and

Mittra [3], who considered the structure to be two bifurcated

junctions in tand;m; the overall solution was deduced with the

help of the generalized scattering matrix technique [1].

The N-furcated junction has also been considered, in early

papers, by Heins [4] and Igarashi [5]; however, their methods

apply only to equally spaced thin septa.

In regard to bifurcated guides with thick septa, one may use

the generalized scattering math technique, considering the junc-

tion as a bifurcated junction with a thin septum followed by a

step discontinuity [6]. However, it would be very laborious to

apply this technique repeatedly for the problem of an N-furcated

waveguide junction with N – 1 arbitrarily spaced thick septa.

In some recent papers [7]–[9], the conservation of the complex

power technique (CCPT,) has been used to obtain theoretically

exact solutions with numerically convergent results to the prob-

lem of scattering at certain waveguide junctions. In this paper,

the CCPT is applied to the specific case of the junction of a

parallel-plate waveguide and an N-furcated parallel-plate wave-

guide, as shown in Fig. 1. The thicknesses il, t2,....tN_~ of the

N – 1 septa are not necess@ly equal, nor are the separations

between plates L1, L2, L3, . . ., L~ of the N waveguides; the sole

constraint is that tl+ t2+ ...+t~_l+Ll +L2+. ..+Lw= L,
where L is the separation between plates of the guide which

forms the junction at z = O with the N-furcated guide. Note also

that the dielectric constant c,. in each waveguide is arbitrary.

Although in this contribution we only consider the problem of

N-furcated parallel-plate waveguide junctions for TE~ and TM,,

excitation, the formulation is also directly applicable to the
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Fig. 1. An N-furcated parallel-plate waveguide junction.

problem of N-furcated rectangular waveguide junctions for TEnO

excitation. Moreover, the generalized scattering matrix technique

[1, pp. 207-217] may be used to treat finite length septa. Thus,

the present approach promises to be useful in the design of

&plane filters [6], [10], [11].

II. FORMULATION OF THE PROBLEM

Although ~e N individual waveguides of the N-furcated struc-

ture are physically isolated by the N – 1 perfectly conducting

thick septa, it will nevertheless be possible to regard these N-ports

as a generalized l-port so that the junction at z = O is simply a

2-port junction of a normal parallel-plate waveguide (for z <O)

and an N-furcated parallel-plate waveguide (for z > O). More-

over, it was shown in [7], that if the electromagnetic fields in each

waveguide are expanded in complete sets of orthogonal TE and

TM modes, the scattering at such junctions involves no cross

coupling between TE and TM modes. Accordingly, the junction

fields can be expanded in terms of TE modes only for the case of

TE excitation, or TM modes only if a TM field is incident on the

junction.

Let the transverse E-fields (TE or TM as the case may be) in

the i th guide at the junction plane z = O be given by the modal

series expansion

i,(x) =~A,,z,,(x) =ZT(X)A, (1)
I

for i=0,1,2, . . . ,N.

In (l), A,l is the lth mode amplitude in the ?th guide and

Z,l ( x) is the modal vector field. As indicated in (l), the field in

the i th guide can be succinctly represented as the product of the

transpose of ~,(x), a column matrix whose lth element is the

vector field Z,l ( x ), and of 4,, a column matrix whose Ith element

is A,[.
At the junction z = O, the boundaxy conditions on the tartgen-

tial E-field dictate that

1El(x) = 2:(X)41 over L1

o over tl

LE2(X) = Z;(X)A2 over L2
io(x)=z:(x)~o= .

Io over t~ _ ~

EN(x) =E~(x)4N over L~

(2)

1From now on we will use the following notations: T denotes transpose. +

denotes Herrnitian transpose. All column matrices wilf be shown with under-

bar. All matrices will be shown in boldface.

The E-field in the Oth guide (z= O_ ) of height L must equal the

E-fields in each of the smaller N guides (z= 0+ ) or vanish on the
flat end faces (Z= 0+) of each of the N – 1 perfectly conducting

septa.

If (2) is a scalar multiplied by the column matrix ?0 ( X) and

use is made of the orthogonality of the modal fields, then if the

product is integrated over the range 0< x < L, (2) becomes, after

algebra

MA—1

A—2

1:1
A. = [H01H02H03 ..0 HON] 43 . (:3)

A“N

In (3), the matrices lfOi, i = 1,2,... ,N are the E-field mode-

matching matrices whose mn th elements are given by

JzOm(x)-zi.(x)dx

H Oz, mn =

;Zom(x)”?om(+

(4)

L

The analytical expressions of Ho,, mm,i = 1,2,. . . ,N for both TE

and TM modes are

{

~ Qi, mn ~ ~+~

1 LLl

H 01, mn = m
(TE)

Ri, w, —-=3
L L,\

m,n=l,2,3, . .

{

m
~Ql,mnY :+;

1
H Oz, mn = mn (TM)

R —=—
t,m$ L L,

m,n =0,1,2,..

where

L
R Z,m= -’J Cos

L ()
~h; ,

hl=L h,=h,_l –(Ll_l+ti_l) h;=h, –,~l.

Let us define H as

H = [H01H02H03 “ ‘ “ HON] . (5)

The matrix equation (3) can then be represented more simply as

,40=~=H~ ((6)

where & is the generalized E-field mode coefficient column

matrix of the N-furcated waveguide.

Turning now to the principle of conservation of complex power

at the generalized 2-port, it can be easily shown, using the same

reasoning as in [7], that if we assume an arbitrary incident field

from the N-furcated guide which can be represented by tlhe

column matrix 4+ and if the scatteredfields are represented bY

~_ and ~_, then the three column matrices are related by the

matrix equation

(7)At PA~_ = (2+ –3_)tPB(&+ +3- )—
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where the matrices PA and PB are diagonal and whose diagonal

elements are the powers carried by unit amplitude modes in the

various waveguides. PB can be written as

[% o . . () 1

1
0 PB2 . . . 0

PB= . . ... .
. . ... .

i Q .“:”- PBN1

(8)

where O is a null matrix. The diagonal submatrices PB1,i =
1,2,. . 0N, have diagonal elements given

p ~, [kfcrl-(~r]’”
Bt, nn=~ ,

~Po

[

Ueocrr

‘[ ( )]

Z’
~$ri _ E 2 1/2 ‘

PBi, nn = L,

[1
~o~rl1/2

L, —
Po ‘

and

~ L [MC+)211”,
A,nn=~

WO

{

~nn= %07i21”2’P,

[1606r0
1/2

L—
Po ‘

Then, if (6) is rewritten so that

&= H(&++&

by

n=l,2,3, . .

n=l,2,3.

n=O.

n=l,2,3, .

n=l,2,3

n=O.

)

(TE)

(TM)

(TE)

(TM)

(9)

we can substitute (9) into (7) and after some manipulation, show

that the back-scattered column matrix for the N-furcated guide is

1.= (PJ+P~B)-l(PJ –P~B)~+ (lo)

where

PLB = HfPAH (11)

is the load power matrix of the large guide as “seen” by the

N- furcated guide.

Defining the E-field mode coefficient scattering matrix [S] of

the generalized 2-port such that

(12)

we can use (10) and the condition that ~ + = O to obtain

s22=(Pj +P~B)-l(PJ– P~B). (13)

Moreover, (9) can be used to show that

S,2=H(I +$2) (14)

where 1 is the identity matrix.

To determine the remaining two submatrices in (12), we can

consider that a field 4 + is now incident from the left side of the

junction, with ~h = O. Then (6) becomes

x4++~_=H~_ (15)

and the power consewation at z = O dictates that

(4+- A-)7pA(4+ +A_)=3t PBB_. (16)

Using (15) in (16) we get

(4+ ‘4- )+PAH&- =@P,l_ (17)

or

(A+-d-)TPAH=@P. (18)

and after taking the Hermitian transpose of (18) and using (15),

we can eliminate ~ _ and obtain, with some rearranging

~.= 2[P~ + P~B] ‘1 HtPjx4+. (19)

Then, with j+= O in this case, it follows from (12) that

1121= 2[P~+P~~] ‘lHtP~. (20)

Moreover, (15) and (20) can be used to give us

Sll = HS21 – I. (21)

It can easily be shown that use of the reciprocity theorem [7],

[12] gives the same result for S21 as (20), i.e.,

{

P~-lS&Pj (by reciprocity)
S21= (22)

2[P~ + P~B] ‘lH~Pj

only if the following two conditions are satisfied: 1) the elements

of H are real, 2) power orthogonality is satisfied, PA and PB are
diagonal. These two conditions are satisfied in lossless parallel-

plate and rectangular waveguide. However, in the case of Iossy

waveguide, where the conditions are not satisfied, we can still use

(20), or the second formula in (22). The solution is formally exact

with matrices of infinite dimension which, for numerical compu-

tation, must be truncated. In Section III, numerical results for a

variety of junctions are presented, as well as a discussion of the

numerical convergence of the CCPT.

III. NUMERICAL RESULTS

A. Bifurcated Guides

We consider first the simplest configuration, the Junction of a

regular parallel-plate waveguide and a bifurcated guide with a

centered septum of variable thickness t.Fig. 2 gives the reflection

coefficient, when a TE1 mode is incident from one of the small

guides, as a function of L1/A and for t = O and t= 0.2L1. For

these calculations, we truncated the various matrices to retain 10

modes in each of the smaller guides and 20 modes in the larger

(for z < O). For the case of an infinitely thin spectum (t = O) and

L1 /A <0.75, our CCPT results are virtually identical to those

given by Lewin [2, p. 282]. The reason for the quantitative

disagreement between our results and those of Lewin at high

values of L1 / A is that Lewin’s results are based upon a quasi-

static analysis.

In Fig. 3, we consider an asymmetrically placed septum with

L1 = 0.6L and for which t = O and t= 0.2L. For the case of a

TEI mode incident from the large guide (z < O), the magnitude of

the reflection coefficient and that of the transmission coefficient

from the large guide into guide 1 are plotted in Fig. 3(a) and (b),

respectively. In the case of t = O, our results are in good agree-
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ment with those of Mittra and Lee [1, pp. 44-45]. However, in

solving this problem using the traditional E- and H-field mode-

matc~ng te~hrtique and the “direct inversion method” [1, pp. 41],

their solutions converged to incorrect values if the ratio of the

number P of modes retained in guide 2 and the number Q

retained in guide 1 were different from the ratio of guide heights.

Only when P/Q = Lz /L1 did the numeficd solutions converge
to the theoretically exact solutions deduced by other means [1,

pp. 45–50]. Mittra and Lee have called this the “relative conver-

gence” phenomenon.

To demonstrate that the CCPT is not affected by the “relative

convergence” phenomenon, we consider specific points (L/A =
0.85) on the curves of Fig. 3(a) and (b). In Fig. 4(a) and 4(b) are
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Fig. 5. Reflection coefficient for TEM incidence as function of L/A; inci-

dence from the large guide, LI = L2.

the corresponding convergence curves for four distinct P/Q
ratios. In all cases, there is absolute convergence to the analyti-

cally correct values. The rate of convergence, however, is greatest

when P/Q = L2 /L1 = 2/3. This type of absolute convergence

has been demonstrated by Shih and Gray [13] in connection with

rectangular-to-rectangular waveguide junctions using a modal

analysis technique virtually identical to the CCPT.
With guide 2 filled with a dielectric (c, = 2.5 and LI = L2 ),

and with the thickness i as a parameter, the CCPT solution for

the TEM reflection coefficient in the large guide is given in Fig. 5

as a function of L/A. Mittra and Lee [1] provide a modified

residue calculus solution for t = O, L = 0.339A, and the two

solutions agree in magnitude and phase to three significant

figures when 20 modes are used in the large guide for the CCPT
solution.

B. Tr@rcated Guides

Treating the microwave 4-port junction of a single parallel-plate

waveguide and a trifurcated guide as a generalized 2-port junc-

tion, we can, as outlined in Section H, use the CCPT to deduce

the scattering matrix of the complete junction.

In order to compare our CCPTresults with those of Pace and

Mittra [3], we consider first the asymmetrical case where Lz = Lg

= 0.5LI and let tl = tz = t with t = O (as in [3]) and t= 0.05L.
The magnitude and phase of the reflection coefficient of the

TEM mode, when incidence is from guide 1, are plotted in

Fig. 6(a) and (b), respectively, as functions of L/A; the corre-

sponding results for incidence from guide 3 are given in Fig. 6(c)

and (d). Our results agree with those of Pace and Mittra [3] for

the t = O case if their reflection coefficient is for guide 1 rather

than guide 3.

Fig. 7 illustrates the effect of the dielectric constant and the

septum thickness for the case of a trifurcated gtide with L1 = L~

= L3, q = tz = t, and e,l = C.z = (,3 = c,. The TEM mode’s re-

flection coefficient for the large guide is given as function of

t/L1 for three different values of cr. In the case of t =0 and
c, =1, the results of our CCPT solution agree with those given by

Pace and Mittra [3]. The convergence results for a typicrd point in.

Fig. 7(t=0, c, =1) are illustrated in Fig. 8.

C. 4- furcated Guides

The simplest case of the junction of a regular guide and a guide

with three equispaced ( L1 = Lz = L3 = L4 ) septa of equal thick-

ness tl= t2= t3= t is first considered for t = O and t= 0.08L,.
Fig. 9 gives the reflection coefficient for the TEI mode in the

large guide.
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mode in Fig. 10(a) is unity below L/A =1.129, since all small

guides are cutoff below this frequency. Just above this frequency,

a sharp decrease of the reflection coefficient indicates the start of

real power flow into guides 2 and 3. At L/~ =1.562, another

sharp decrease of the reflection coefficient takes place due to the

start of real power flow into guide 1.

Fig. 7. Reflection coefficient for TEM incidence as function of t/Ll; inci-

dence from the large guide; LI = L2 = L3, tl = tz = t, 6,1 = ●,z = ~,s = c,,

L/A = 0.3.

Finally, we consider the case of the junction of regular guide

and a guide with three arbitrarily spaced septa of arbitrzuy

thickness L1 = 0.32L, Lz = L3 = 0.14L, LA = 0.12L, tl = t~ =
0.07L, tq = 0.14L, <,0 = C,l = C,4=1, and Crz = C,3 =10. Fig. 10

gives the reflection coefficients for the TEI and TEM modes as

functions of L/k when the incidence is from the large guide.

Note that the magnitude of the reflection coefficients for the TEI

IV. CONCLUSIONS

This paper has provided a formally exact solution with conver-

gent numerical results to the problem of EM scattering at an

N-furcated parallel-plate waveguide junction with arbitrady
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spaced thick septa. The problem is formulated so that the com-

plexity of the evaluation procedures is not affected by the num-

ber of septa. The calculated results are in excellent agreement

with other available data. Moreover, investigation of the effect of

matrix truncation indicates that the CCPT solutions converge

absolutely to the exact solutions, making the problem of” relative

convergence” virtually nonexistent. Possible application of this

approaches in the design of E-plane filters.
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Microstrip Transmission Line With Finite-Width

, Dielectric and Ground Plane

CHARLES E. SMITH AND RAY-SUN CHANG

Abstract —Design data for microstrip transmission lines with finite-width

dielectric and ground plane are presented. The characteristic impedance

and velocity of propagation are tabulated from resufts of a moment-method

solution of a quasi-TEM transmission-line model of this microstrip struc-

tnre.

1. INTRODUCTION

A numerical solution for an open microstrip transmission line

with a finite-width dielectric and infinite-width ground plane was

recently described in a paper by Smith and Chang [1]. This case
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Fig. 1. Microstrip transmission line with both a truncated dielectric substrate

and ground plane.

of the truncated dielectric microstrip with an infinite ground

plane was considered because it more closely approximates the

practical finite substrate case than the idealized infinite-width

model normally employed. Consequently, a parameter study {of

the characteristics of this type of transmission line was presented

for design purposes for practical applications.

However, another related model of some importance is that (of

a microstrip transmission line having both a truncated dielect cic

and ground plane as shown in Fig. 1. Thk finite-width dielectric

and ground-plane structure represents several practical applica-

tions where odd-mode propagation is dominant. One such applic-

ation of the structure is related to the design of tapered, bal-

anced-to-unbalanced, transformers (baluns) such as that type

originally proposed by Duncan and Minerva [2] and later used ;n

principle by Garts, Kajfez, and Rumsey for mode conversion in

microstriplines [3]. The resulting transformer employs a tapered

transition which has a characteristic impedance that varies con-

tinuously in a smooth fashion from the balanced-to-unbalanced

transmission line, and the cross-sectional characteristic imped-

ance as a function of length is the desired design quantity in this

approach based on the theory of small reflections [4].

A related problem consisting of two perfectly conducting zero-

thickne:s parallel strips of unequal widths in a homogeneous

medium has been analyzed to obtain an approximate solution to

this class of structures for design purposes [5]. The acc~acy of

this data is certainly questionable because of the homogeneous

modeling of this inhomogeneous structure, particularly for both

small T and W/H as defined in Fig. 1. Thus, a numerical

solution for the inhomogeneous configuration of Fig. 1 has been

developed to obtain a better approximation of line parameters for

general design purposes. Tentative results from this numerical

analysis indicate that the design data for the homogeneous model

is indeed in error by more than ten percent for small W/H ratios

[6]. A brief discussion and the computed results of this numerical

solution for the truncated dielectric and ground-plane structure

are presented in the next section of this paper.

II. NUMERICAL SOLUTION AND I@ULTS

The tr~smission-line characteristics for the microstrip prob-

lem of Fig. 1 can be obtained using a free-space Green?s functicm

formulation in terms of equivalent surface charge sources on the

structure boundaries coupled with a moment-method solution for

a quasi-TEM model. This approach has been used previously to

solve inhomogeneous electrostatic problems, and the theory for

this method has been presented in several forms by Smith m~d

Chang [1], Barrington and Pontoppidan [7], Adams and Mautz

[8], and Smith [9]. In addition, Rae, Sarkar, and Barrington have

recently used this same surface charge formulation to analyze

electrostatic fields of conducting bodies in multiple dielectric
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