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lowed 3 dB to convert our double-sideband measurements to
single-sideband for comparison. This may well be too large an
increase since we are thereby assuming the mixer to respond
equally in both sidebands, which is unlikely given the resonant
nature of the diode-stripline-IF filter combination.

The local oscillator power requirement of our mixer is seen to
be relatively low; this becomes important if the design is to be
used at higher frequencies [10). Fig. 10 shows that there is some
residual IF mismatch at 3.9 GHz which could be removed by an
appropriate IF impedance matching transformer leading to a
further small improvement in performance.

The most significant advantage of the new design lies in the
simplicity of the structure. Given the availability of diodes,
a mixer with good performance can be assembled without
sophisticated bonding or whiskering equipment. Furthermore,
the reduction of all linear dimensions (including those of the
Schottky barrier) by up to a factor of two would appear to
present no difficulty either in diode processing or mixer circuit
construction and assembly. We, therefore, anticipate that the
same basic design can be used for operation up to 200 GHz.
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Scattering at an N-Furcated Parallel-Plate
Waveguide Junction
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Abstract —Using the conservation of complex power technique (CCPT),
this paper presents a solution to the problem of EM scattering at the
junction of a parallel-plate waveguide and an N-furcated parallel-plate
waveguide with arbitrarily spaced thick septa. Although this junction can be
regarded as an (N + 1)-port configuration, the problem is formulated so
that it is viewed mathematically as a generalized 2-port. This leads to very
simple expressions for the scattering parameters of the junction. Conver-
gent numerical results are presented for bifurcated, trifurcated, and 4-fur-
cated structures, and the effects of varying the thickness of the septa are
investigated. The formulation is directly applicable to N -furcated rectangu-
lar waveguide junctions having TE,, excitation, with application in the
design of E-plane filters.

I. INTRODUCTION

FElectromagnetic scattering at the junction of a parallel-plate
waveguide and a bifurcated parallel-plate waveguide with a sep-
tum of vanishing thickness has been studied by Mittra and Lee
[1], who provided analytical solutions using the residue calculus
method and the Wiener—Hopf technique. Moreover, a quasi-static
solution using the singular integral equation method has been
given by Lewin [2] for the case of a centrally located infinitely
thin septum.

Trifurcated waveguide junctions were treated by Pace and
Mittra [3], who considered the structure to be two bifurcated
junctions in tandeém; the overall solution was deduced with the
help of the generalized scattering matrix technique [1].

The N-furcated junction has also been considered, in early
papers, by Heins [4] and Igarashi [5]; however, their methods
apply only to equally spaced thin septa.

In regard to bifurcated guides with thick septa, one may use
the generalized scattering matrix technique, considering the junc-
tion as a bifurcated junction with a thin septum followed by a
step discontinuity [6]. However, it would be very laborious to
apply this technique repeatedly for the problem of an N-furcated
waveguide junction with N —1 arbitrarily spaced thick septa.

In some recent papers [7]-[9], the conservation of the complex
power technique (CCPT) has been used to obtain theoretically
exact solutions with numerically convergent results to the prob-
lem of scattering at certain waveguide junctions. In this paper,
the CCPT is applied to the specific case of the junction of a
parallel-plate waveguide and an N-furcated parallel-plate wave-
guide, as shown in Fig. 1. The thicknesses #;,1,, - ,¢y_; of the
N —1 septa are not necessarily equal, nor are the separations
between plates L,, L,, Ls,---,L, of the N waveguides; the sole
constraintisthat t, + ¢, + -+ -+t _+ L+ L, + --- + Ly =1L,
where L is the separation between plates of the guide which
forms the junction at z = 0 with the N-furcated guide. Note also
that the dielectric constant ¢,,, in each waveguide is arbitrary.

Although in this contribution we only consider the problem of
N-furcated parallel-plate waveguide junctions for TE, and TM,,
excitation, the formulation is also directly applicable to the
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Fig. 1. An N-furcated parallel-plate waveguide junction.

problem of N-furcated rectangular waveguide junctions for TE,,
excitation. Moreover, the generalized scattering matrix technique
[1, pp. 207-217] may be used to treat finite length septa. Thus,
the present approach promises to be useful in the design of
E-plane filters [6], [10], {11].

II. FORMULATION OF THE PROBLEM

Although the N individual waveguides of the N-furcated struc-
ture are physically isolated by the N —1 perfectly conducting
thick septa, it will nevertheless be possible to regard these N-ports
as a generalized 1-port so that the junction at z =0 is simply a
2-port junction of a normal parallel-plate waveguide (for z < 0)
and an N-furcated parallel-plate waveguide (for z > 0). More-
over, it was shown in [7], that if the electromagnetic fields in each
waveguide are expanded in complete sets of orthogonal TE and
TM modes, the scattering at such junctions involves no cross
coupling between TE and TM modes. Accordingly, the junction
fields can be expanded in terms of TE modes only for the case of
TE excitation, or TM modes only if a TM field is incident on the
junction.

Let the transverse E-fields (TE or TM as the case may be) in
the ith guide at the junction plane z = 0 be given by the modal
series expansion!

Ez(x) =¥Allall(x) = EIT(X)AI

for i=0,1,2,---,N.

In (1), 4, is the /th mode amplitude in the ith guide and
#,(x) is the modal vector field. As indicated in (1), the field in
the ith guide can be succinctly represented as the product of the
transpose of € (x), a column matrix whose /th element is the
vector field €,(x), and of 4,, a column matrix whose /th element
is A,.

At the junction z = 0, the boundary conditions on the tangen-
tial E-field dictate that

&)

E(x)=&(x)4 over L,
0 over
E(x)=¢8l(x)4 over L
Eo(x)__:j:' X)Ao— ] 2( ) —2( )—2 ) 2
0 over fy_;
Ey(x)=25(x) 4y over Ly

(2

LFrom now on we will use the following notations: T denotes transpose. ¥
denotes Hermitian transpose. All column matrices will be shown with under-
bar. All matrices will be shown in boldface.
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The E-field in the Oth guide (z = 0_) of height L must equal the
E-fields in each of the smaller N guides (z = 0_) or vanish on the
flat end faces (z =0.) of each of the N —1 perfectly conducting
septa.

If (2) is a scalar multiplied by the column matrix g,(x) and
use is made of the orthogonality of the modal fields, then if the
product is integrated over the range 0 < x < L, (2) becomes, after
algebra
4,
4,
4,

4o= [H01H02H03 T HON] (3)

L

N
In (3), the matrices H,;,i=1,2,---,N are the E-field mode-
matching matrices whose mnth elements are given by
[ Fom(x)-(x) dx
Ll
. (4
'I;EOm(x)'EOm(x) dx

=1,2,---,N for both TE

HOz,mn =

The analytical expressions of H, ., i
and TM modes are

L f,mn> L L -
HOl,mn= m n (TE)
Ri,m’ —Z=f1
m,n=1,2,3,.-
m m n
_ZQl,mn’ Z;EZ;
HOt,mn m n (TM)
fm? L I
m,n=0,1,2,.---
where
2n |
L n+l . ( mm . (mm )
Q. yn = ——————1[(~1)"""sin P )+sin Th,)

h1=L h1=h1—1—(L1—1+ti—l) h:=h1_Lt'
Let us define H as '
H= [HmHozHos o 'HON]-

&)
The matrix equation (3) can then be represented more simply as
Ay=A=HB (6

where B is the generalized E-field mode coefficient column
matrix of the N-furcated waveguide.

Turning now to the principle of conservation of complex power
at the generalized 2-port, it can be easily shown, using the sarne
reasoning as in [7], that if we assume an arbitrary incident field
from the N-furcated guide which can be represented by the
column matrix B, and if the scattered fields are represented by
B_ and A_, then the three column matrices are related by the
matrix equation

A" PA_=(B,-B_ )'Py(B,+B_) (7)
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where the matrices P, and Py are diagonal and whose diagonal
elements are the powers carried by unit amplitude modes in the
various waveguides. Py can be written as

P, 0 - 0
0 P, e 0
B= . 7L (8)
0 o P,y

where 0 is a null matrix. The diagonal submatrices Pg,,i=
1,2, -+ N, have diagonal elements given by

2112
[kée,,—(ﬂ) ]
LI

PB,’,,,,=% ” , n=1,2,3,--- (TE)
0
Lz WEGE,, .
7 n”21/2, n—1,2,3~~
[k(z)‘ri_(_) ]
PBi,nn= L’ (TM)
l[ezerl:ll/z, n=0'
0
and
211/2
L [k‘%""_(n;) ]
Pin=" ” ,  n=123,--- (TE)
0
L WEHE,q _
2 nw\2|? n=123-
I:k(z)ero—(—i—) ]
PA,nn (TM)
1/2
| ], n=o0.
0

Then, if (6) is rewritten so that

A_=H(B.+B.)

9)

we can substitute (9) into (7) and after some manipulation, show
that the back-scattered column matrix for the N-furcated guide is

B =(Py+P};) (P~ Pj;)B. (10)

where

P ,=H'PH (11)
is the load power matrix of the large guide as “seen” by the
N-furcated guide.

Defining the E-field mode coefficient scattering matrix [ S] of
the generalized 2-port such that

P @
we can use (10) and the condition that 4, = 0 to obtain
S = (P} + Pls) '(PL—Ply). (13)
Moreover, (9) can be used to show that
SL,=H(I+S5),) (19)

where I is the identity matrix.
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To determine the remaining two submatrices in (12), we can
consider that a field 4. is now incident from the left side of the
junction, with B, = 0. Then (6) becomes

A +A =HB_ (15)
and the power conservation at z = 0 dictates that
(4, —A4_)'P(4,+4_)=B'P,B_.

Using (15) in (16) we get

(16)
(4,-A4_)'P,HB =B' P,B 17
or

and after taking the Hermitian transpose of (18) and using (15),
we can eliminate 4 _ and obtain, with some rearranging

B =2 P+ Pl HPIA,.
Then, with B_ = 0 in this case, it follows from (12) that

(19)

Sy =2[ Py + Pj,] 'HP.
Moreover, (15) and (20) can be used to give us
S, =HS, —1.

(20)

(21)
It can easily be shown that use of the reciprocity theorem [7],
[12} gives the same result for §,; as (20), ie.,

B Pi7IST P (by reciprocity)

= - (22)
2[ P+ P, 'H'P]

21

only if the following two conditions are satisfied: 1) the elements
of H are real, 2) power orthogonality is satisfied, P, and Py are
diagonal. These two conditions are satisfied in lossless parallel-
plate and rectangular waveguide. However, in the case of lossy
waveguide, where the conditions are not satisfied, we can still use
(20), or the second formula in (22). The solution is formally exact
with matrices of infinite dimension which, for numerical compu-
tation, must be truncated. In Section III, numerical results for a
variety of junctions are presented, as well as a discussion of the
numerical convergence of the CCPT.

III. NUMERICAL RESULTS

A. Bifurcated Guides

We consider first the simplest configuration, the junction of a
regular parallel-plate waveguide and a bifurcated guide with a
centered septum of variable thickness z. Fig. 2 gives the reflection
coefficient, when a TE; mode is incident from one of the small
guides, as a function of L; /A and for t=0 and ¢=0.2L,. For
these calculations, we truncated the various matrices to retain 10
modes in each of the smaller guides and 20 modes in the larger
(for z < 0). For the case of an infinitely thin spectum (¢ = 0) and
L,/X<0.75, our CCPT results are virtually identical to those
given by Lewin [2, p. 282]. The reason for the quantitative
disagreement between our results and those of Lewin at high
values of L, /A is that Lewin’s results are based upon a quasi-
static analysis.

In Fig. 3, we consider an asymmetrically placed septum with
L, =0.6L and for which =0 and ¢=0.2L. For the case of a
TE; mode incident from the large guide (z < 0), the magnitude of
the reflection coefficient and that of the transmission coefficient
from the large guide into guide 1 are plotted in Fig. 3(a) and (b),
respectively. In the case of =0, our results are in good agree-



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 9, SEPTEMBER 1985

a b
0.25 4 @ Y 1904 (b)
L 1
i " *aes Lonin
0.20 1 Pt 0.0
seue Looin - CPT. t50. 21

£ CCPT ¢20.00 120 3
g s ——— Pt O %
b g
13 E 100
s .1
E 0.10 4
: .
3

0.05 .

0.00 + 40

.5 a6 0.7 0% 0.8 1.0 [ 31 0.6 [ %} 0.0 s Lo
[S72Y [S12Y

Fig. 2. Reflection coefficient for TE, incidence as function of L,/A; inci-
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MAGNITUDE OF TRANSMISSION COEFF

ment with those of Mittra and Lee [1, pp. 44-45]. However, in
solving this problem using the traditional E- and H-field mode-
matching technique and the “direct inversion method” [1, pp. 41},
their solutions converged to incorrect values if the ratio of the
number P of modes retained in guide 2 and the number @
retained in guide 1 were different from the ratio of guide heights.
Only when P/Q =L, /L, did the numerical solutions converge
to the theoretically exact solutions deduced by other means [1,
pp. 45-50]. Mittra and Lee have called this the “relative conver-
gence” phenomenon.

To demonstrate that the CCPT is not affected by the “relative
convergence” phenomenon, we consider specific points (L/A =
0.85) on the curves of Fig. 3(a) and (b). In Fig. 4(a) and 4(b) are
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Fig. 5. Reflection coefficient for TEM incidence as function of L/X; inci-
dence from the large guide, L; = L,.

the corresponding convergence curves for four distinct P/Q
ratios. In all cases, there is absolute convergence to the analyti-
cally correct values. The rate of convergence, however, is greatest
when P/Q=L,/L,=2/3. This type of absolute convergence
has been demonstrated by Shih and Gray [13] in connection with
rectangular-to-rectangular waveguide junctions using a modal
analysis technique virtually identical to the CCPT.

With guide 2 filled with a dielectric (¢, =2.5 and L, = L,),
and with the thickness ¢ as a parameter, the CCPT solution for
the TEM reflection coefficient in the large guide is given in Fig. §
as a function of L/A. Mittra and Lee [1] provide a modified
residue calculus solution for r=0, L=0.339A, and the two
solutions agree in magnitude and phase to three significant
figures when 20 modes are used in the large guide for the CCPT
solution.

B. Trifurcated Guides

Treating the microwave 4-port junction of a single parallel-plate
waveguide and a trifurcated guide as a generalized 2-port junc-
tion, we can, as outlined in Section II, use the CCPT to deduce
the scattering matrix of the complete junction.

In order to compare our CCPT results with those of Pace and
Mittra [3], we consider first the asymmetrical case where L, = L,
=0.5L, and let ¢, =1, =1t with t=0 (as in [3]) and r=0.05L.
The magnitude and phase of the reflection coefficient of the
TEM mode, when incidence is from guide 1, are plotted in
Fig. 6(a) and (b), respectively, as functions of L/A; the corre-
sponding results for incidence from guide 3 are given in Fig,. 6(c)
and (d). Our results agree with those of Pace and Mittra [3] for
the ¢ =0 case if their reflection coefficient is for guide 1 rather
than guide 3.

Fig. 7 illustrates the effect of the dielectric constant and the
septum thickness for the case of a trifurcated guide with L, = L,
=L, y=t,=t, and ¢, =¢,, =¢,;=¢,.. The TEM mode’s re-
flection coefficient for the large guide is given as function of
t/L, for three different values of ¢,. In the case of =0 and
¢, =1, the results of our CCPT solution agree with those given by
Pace and Mittra [3]. The convergence results for.a typical point in
Fig. 7 (¢ = 0, ¢, =1) are illustrated in Fig. 8.

C. 4-furcated Guides

The simplest case of the junction of a regular guide and a guide
with three equispaced (L, = L, = L, = L,) septa of equal thick-
ness t; =t, =1t; =1 is first considered for +=0 and z=0.08L.
Fig. 9 gives the reflection coefficient for the TE; mode in-the
large guide.
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Finally, we consider the case of the junction of regular guide
and a guide with three arbitrarily spaced septa of arbitrary
thickness L, =032L, L,=L,=014L, L,=012L, ¢,=¢=
0.07L, t,=014L, ¢,,=¢,, =¢,, =1, and ¢,, =¢,;=10. Fig. 10
gives the reflection coefficients for the TE, and TEM modes as
functions of L/A when the incidence is from the large guide.
Note that the magnitude of the reflection coefficients for the TE;
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mode in Fig. 10(a) is unity below L/A =1.129, since all small
guides are cutoff below this frequency. Just above this frequency,
a sharp decrease of the reflection coefficient indicates the start of
real power flow into guides 2 and 3. At L/A=1.562, another
sharp decrease of the reflection coefficient takes place due to the
start of real power flow into guide 1.

IV. ConNcLusIONS

This paper has provided a formally exact solution with conver-
gent numerical results to the problem of EM scattering at an
N-furcated parallel-plate waveguide junction with arbitrarily
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spaced thick septa. The problem is formulated so that the com-
plexity of the evaluation procedures is not affected by the num-
ber of septa. The calculated results are in excellent agreement
with other available data. Moreover, investigation of the effect of
matrix truncation indicates that the CCPT solutions converge
absolutely to the exact solutions, making the problem of “relative
convergence” virtually nonexistent. Possible application of this
approdch is in the design of E-plane filters.
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Microstrip Transmission Line With Finite-Width
Dielectric and Ground Plane

CHARLES E. SMITH AND RAY-SUN CHANG

Abstract —Design data for microstrip transmission lines with finite-width
dielectric and ground plane are presented. The characteristic impedance
and velocity of propagation are tabulated from results of a moment-method
solution of a quasi-TEM transmission-line model of this microstrip struc-
ture.

I. INTRODUCTION

A numerical solution for an open microstrip transmission line
with a finite-width dielectric and infinite-width ground plane was
recently described in a paper by Smith and Chang [1]. This case
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Fig. 1. Microstrip transmission line with both a truncated dielectric substrate

and ground plane.

of the truncated dielectric microstrip with an infinite ground
plane was considered because it more closely approximates the
practical finite substrate case than the idealized infinite-width
model normally employed. Consequently, a parameter study of
the characteristics of this type of transmission line was presented
for design purposes for practical applications.

However, another related model of some importance is that of
a microstrip transmission line having both a truncated dielectric
and ground plane as shown in Fig. 1. This finite-width dielecteic
and ground-plane structure represents several practical applica-
tions where odd-mode propagation is dominant. One such appli-
cation of the structure is related to the design of tapered, bal-
anced-to-unbalanced, transformers (balung) such as that type
originally proposed by Duncan and Minerva [2] and later used in
principle by Gans, Kajfez, and Rumsey for mode conversion in
microstriplines [3]. The resulting transformer employs a tapered
transition which has a characteristic impedance that varies con-
tinuously in a smooth fashion from the balanced-to-unbalanced
transmission line, and the cross-sectional characteristic imped-
ance as a function of length is the desired design quantity in this
approach based on the theory of small reflections [4].

A related problem consisting of two perfectly conducting zero-
thickness parallel strips of unequal widths in a homogeneous
medium has been analyzed to obtain an approximate solution {0
this class of structures for design purposes [5]. The accuracy of
this data is certainly questionable because of the homogeneous
modeling of this inhomogeneous structure, particularly for both
small T and W/H as defined in Fig. 1. Thus, a numerical
solution for the inhomogeneous configuration of Fig. 1 has been
developed to obtain a better approximation of line parameters for
general design purposes. Tentative results from this numerical
analysis indicate that the design data for the homogeneous model
is indeed in error by more than ten percent for small W/H ratios
[6]. A brief discussion and the computed results of this numerical
solution for the truncated dielectric and ground-plane structure
are presented in the next section of this paper.

II. NUMERICAL SOLUTION AND RESULTS

The transmission-line characteristics for the microstrip prob-
lem of Fig. 1 can be obtained using a free-space Green’s function
formulation in terms of equivalent surface charge sources on the
structure boundaries coupled with a moment-method solution for
a quasi-TEM model. This approach has been used previously to
solve inhomogeneous electrostatic problems, and the theory for
this method has been presented in several forms by Smith and
Chang [1], Harrington and Pontoppidan {7}, Adams and Mautz
[8], and Smith [9]. In addition, Rao, Sarkar, and Harrington have
recently used this same surface charge formulation to analyze
electrostatic fields of conducting bodies in multiple dielectric
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